Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Pharmacol Ther ; 258: 108641, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38583670

RESUMO

Major depression is an established risk factor for subsequent dementia, and depression in late life may also represent a prodromal state of dementia. Considering current challenges in the clinical development of disease modifying therapies for dementia, the focus of research is shifting towards prevention and modification of risk factors to alter the neurodegenerative disease trajectory. Understanding mechanistic commonalities underlying affective symptoms and cognitive decline may reveal biomarkers to aid early identification of those at risk of progressing to dementia during the preclinical phase of disease, thus allowing for timely intervention. Adult hippocampal neurogenesis (AHN) is a phenomenon that describes the birth of new neurons in the dentate gyrus throughout life and it is associated with spatial learning, memory and mood regulation. Microglia are innate immune system macrophages in the central nervous system that carefully regulate AHN via multiple mechanisms. Disruption in AHN is associated with both dementia and major depression and microgliosis is a hallmark of several neurodegenerative diseases. Emerging evidence suggests that psychedelics promote neuroplasticity, including neurogenesis, and may also be immunomodulatory. In this context, psilocybin, a serotonergic agonist with rapid-acting antidepressant properties has the potential to ameliorate intersecting pathophysiological processes relevant for both major depression and neurodegenerative diseases. In this narrative review, we focus on the evidence base for the effects of psilocybin on adult hippocampal neurogenesis and microglial form and function; which may suggest that psilocybin has the potential to modulate multiple mechanisms of action, and may have implications in altering the progression from major depression to dementia in those at risk.

2.
Brain ; 146(12): 4916-4934, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37849234

RESUMO

Alzheimer's disease is a complex neurodegenerative disorder leading to a decline in cognitive function and mental health. Recent research has positioned the gut microbiota as an important susceptibility factor in Alzheimer's disease by showing specific alterations in the gut microbiome composition of Alzheimer's patients and in rodent models. However, it is unknown whether gut microbiota alterations are causal in the manifestation of Alzheimer's symptoms. To understand the involvement of Alzheimer's patient gut microbiota in host physiology and behaviour, we transplanted faecal microbiota from Alzheimer's patients and age-matched healthy controls into microbiota-depleted young adult rats. We found impairments in behaviours reliant on adult hippocampal neurogenesis, an essential process for certain memory functions and mood, resulting from Alzheimer's patient transplants. Notably, the severity of impairments correlated with clinical cognitive scores in donor patients. Discrete changes in the rat caecal and hippocampal metabolome were also evident. As hippocampal neurogenesis cannot be measured in living humans but is modulated by the circulatory systemic environment, we assessed the impact of the Alzheimer's systemic environment on proxy neurogenesis readouts. Serum from Alzheimer's patients decreased neurogenesis in human cells in vitro and were associated with cognitive scores and key microbial genera. Our findings reveal for the first time, that Alzheimer's symptoms can be transferred to a healthy young organism via the gut microbiota, confirming a causal role of gut microbiota in Alzheimer's disease, and highlight hippocampal neurogenesis as a converging central cellular process regulating systemic circulatory and gut-mediated factors in Alzheimer's.


Assuntos
Doença de Alzheimer , Microbioma Gastrointestinal , Humanos , Ratos , Animais , Hipocampo , Cognição , Microbioma Gastrointestinal/fisiologia , Neurogênese/fisiologia
3.
Mol Nutr Food Res ; : e2300271, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37876144

RESUMO

SCOPE: Evidence on the Mediterranean diet (MD) and age-related cognitive decline (CD) is still inconclusive partly due to self-reported dietary assessment. The aim of the current study is to develop an MD- metabolomic score (MDMS) and investigate its association with CD in community-dwelling older adults. METHODS AND RESULTS: This study includes participants from the Three-City Study from the Bordeaux (n = 418) and Dijon (n = 422) cohorts who are free of dementia at baseline. Repeated measures of cognition over 12 years are collected. An MDMS is designed based on serum biomarkers related to MD key food groups and using a targeted metabolomics platform. Associations with CD are investigated through conditional logistic regression (matched on age, sex, and education level) in both sample sets. The MDMS is found to be inversely associated with CD (odds ratio [OR] [95% confidence interval (CI)] = 0.90 [0.80-1.00]; p = 0.048) in the Bordeaux (discovery) cohort. Results are comparable in the Dijon (validation) cohort, with a trend toward significance (OR [95% CI] = 0.91 [0.83-1.01]; p = 0.084). CONCLUSIONS: A greater adherence to the MD, here assessed by a serum MDMS, is associated with lower odds of CD in older adults.

4.
Brain ; 146(5): 2045-2058, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36703180

RESUMO

Adult hippocampal neurogenesis is important for learning and memory and is altered early in Alzheimer's disease. As hippocampal neurogenesis is modulated by the circulatory systemic environment, evaluating a proxy of how hippocampal neurogenesis is affected by the systemic milieu could serve as an early biomarker for Alzheimer's disease progression. Here, we used an in vitro assay to model the impact of systemic environment on hippocampal neurogenesis. A human hippocampal progenitor cell line was treated with longitudinal serum samples from individuals with mild cognitive impairment, who either progressed to Alzheimer's disease or remained cognitively stable. Mild cognitive impairment to Alzheimer's disease progression was characterized most prominently with decreased proliferation, increased cell death and increased neurogenesis. A subset of 'baseline' cellular readouts together with education level were able to predict Alzheimer's disease progression. The assay could provide a powerful platform for early prognosis, monitoring disease progression and further mechanistic studies.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Adulto , Humanos , Doença de Alzheimer/metabolismo , Hipocampo/metabolismo , Aprendizagem , Disfunção Cognitiva/psicologia , Neurogênese/fisiologia , Progressão da Doença
5.
Hippocampus ; 33(4): 322-346, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36709412

RESUMO

Hippocampal neurogenesis (HN) is considered an important mechanism underlying lifelong brain plasticity, and alterations in this process have been implicated in early Alzheimer's disease progression. APOE polymorphism is the most common genetic risk factor for late-onset Alzheimer's disease where the ε4 genotype is associated with a significantly earlier disease onset compared to the neutral ε3 allele. Recently, APOE has been shown to play an important role in the regulation of HN. However, the time-dependent impact of its polymorphism in humans remains elusive, partially due to the difficulties of studying human HN in vivo. To bridge this gap of knowledge, we used an in vitro cellular model of human HN and performed a time course characterization on isogenic induced pluripotent stem cells with different genotypes of APOE. We found that APOE itself was more highly expressed in ε4 at the stem cell stage, while the divergence of differential gene expression phenotype between ε4 and ε3 became prominent at the neuronal stage of differentiation. This divergence was not associated with the differential capacity to generate dentate gyrus granule cell-like neurons, as its level was comparable between ε4 and ε3. Transcriptomic profiling across different stages of neurogenesis indicated a clear "maturation of functional neurons" phenotype in ε3 neural progenitors and neurons, while genes differentially expressed only in ε4 neurons suggested potential alterations in "metabolism and mitochondrial function." Taken together, our in vitro investigation suggests that APOE ε4 allele can exert a transcriptome-wide effect at the later stages of HN, without altering the overall level of neurogenesis per se.


Assuntos
Doença de Alzheimer , Humanos , Alelos , Doença de Alzheimer/genética , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Genótipo , Hipocampo , Neurogênese/genética , Polimorfismo Genético
6.
Nutrients ; 14(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36364950

RESUMO

The gut microbiome is involved in nutrient metabolism and produces metabolites that, via the gut−brain axis, signal to the brain and influence cognition. Human studies have so far had limited success in identifying early metabolic alterations linked to cognitive aging, likely due to limitations in metabolite coverage or follow-ups. Older persons from the Three-City population-based cohort who had not been diagnosed with dementia at the time of blood sampling were included, and repeated measures of cognition over 12 subsequent years were collected. Using a targeted metabolomics platform, we identified 72 circulating gut-derived metabolites in a case−control study on cognitive decline, nested within the cohort (discovery n = 418; validation n = 420). Higher serum levels of propionic acid, a short-chain fatty acid, were associated with increased odds of cognitive decline (OR for 1 SD = 1.40 (95% CI 1.11, 1.75) for discovery and 1.26 (1.02, 1.55) for validation). Additional analyses suggested mediation by hypercholesterolemia and diabetes. Propionic acid strongly correlated with blood glucose (r = 0.79) and with intakes of meat and cheese (r > 0.15), but not fiber (r = 0.04), suggesting a minor role of prebiotic foods per se, but a possible link to processed foods, in which propionic acid is a common preservative. The adverse impact of propionic acid on metabolism and cognition deserves further investigation.


Assuntos
Eixo Encéfalo-Intestino , Disfunção Cognitiva , Humanos , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Disfunção Cognitiva/metabolismo , Metabolômica
7.
Mol Psychiatry ; 27(12): 5049-5061, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36195636

RESUMO

Coronavirus disease 2019 (COVID-19), represents an enormous new threat to our healthcare system and particularly to the health of older adults. Although the respiratory symptoms of COVID-19 are well recognized, the neurological manifestations, and their underlying cellular and molecular mechanisms, have not been extensively studied yet. Our study is the first one to test the direct effect of serum from hospitalised COVID-19 patients on human hippocampal neurogenesis using a unique in vitro experimental assay with human hippocampal progenitor cells (HPC0A07/03 C). We identify the different molecular pathways activated by serum from COVID-19 patients with and without neurological symptoms (i.e., delirium), and their effects on neuronal proliferation, neurogenesis, and apoptosis. We collected serum sample twice, at time of hospital admission and approximately 5 days after hospitalization. We found that treatment with serum samples from COVID-19 patients with delirium (n = 18) decreased cell proliferation and neurogenesis, and increases apoptosis, when compared with serum samples of sex- and age-matched COVID-19 patients without delirium (n = 18). This effect was due to a higher concentration of interleukin 6 (IL6) in serum samples of patients with delirium (mean ± SD: 229.9 ± 79.1 pg/ml, vs. 32.5 ± 9.5 pg/ml in patients without delirium). Indeed, treatment of cells with an antibody against IL6 prevented the decreased cell proliferation and neurogenesis and the increased apoptosis. Moreover, increased concentration of IL6 in serum samples from delirium patients stimulated the hippocampal cells to produce IL12 and IL13, and treatment with an antibody against IL12 or IL13 also prevented the decreased cell proliferation and neurogenesis, and the increased apoptosis. Interestingly, treatment with the compounds commonly administered to acute COVID-19 patients (the Janus kinase inhibitors, baricitinib, ruxolitinib and tofacitinib) were able to restore normal cell viability, proliferation and neurogenesis by targeting the effects of IL12 and IL13. Overall, our results show that serum from COVID-19 patients with delirium can negatively affect hippocampal-dependent neurogenic processes, and that this effect is mediated by IL6-induced production of the downstream inflammatory cytokines IL12 and IL13, which are ultimately responsible for the detrimental cellular outcomes.


Assuntos
COVID-19 , Delírio , Hipocampo , Neurogênese , Idoso , Humanos , COVID-19/sangue , COVID-19/metabolismo , COVID-19/patologia , Delírio/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Interleucina-12/metabolismo , Interleucina-12/farmacologia , Interleucina-13/metabolismo , Interleucina-13/farmacologia , Interleucina-6 , Células-Tronco/metabolismo , Células-Tronco/virologia
8.
Lancet Planet Health ; 6(9): e749-e759, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36087605

RESUMO

The EAT-Lancet Commission devised a sustainable reference diet with the aim of reducing the incidence of non-communicable diseases and mortality globally while improving food system sustainability. The extent to which the reference diet supports cognitive function across the life course, however, has not yet been evaluated. This Review assesses the evidence for diet supporting cognitive function from childhood into old age. A comprehensive but non-exhaustive literature search was done, synthesising studies that investigated the effect of whole foods on cognition in healthy, community-dwelling human participants. We found that the current evidence base is weak with mixed conclusions and multiple methodological caveats, which precludes strong conclusions pertaining to the suitability of dietary recommendations for each food group per age group. Long-term intervention and prospective cohort studies are needed to reduce this knowledge deficit. Revising dietary recommendations with the aim of maintaining an adequate nutrient intake to sustain healthy cognitive function across the life course could be worthwhile. This Review outlines recommendations for future work to help improve the current knowledge deficit regarding dietary intake and cognitive function across the life course and its implications for dietary guidelines such as the EAT-Lancet Commission.


Assuntos
Dieta , Acontecimentos que Mudam a Vida , Criança , Cognição , Humanos , Política Nutricional , Estudos Prospectivos
9.
Mol Psychiatry ; 27(8): 3425-3440, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35794184

RESUMO

Environmental factors like diet have been linked to depression and/or relapse risk in later life. This could be partially driven by the food metabolome, which communicates with the brain via the circulatory system and interacts with hippocampal neurogenesis (HN), a form of brain plasticity implicated in depression aetiology. Despite the associations between HN, diet and depression, human data further substantiating this hypothesis are largely missing. Here, we used an in vitro model of HN to test the effects of serum samples from a longitudinal ageing cohort of 373 participants, with or without depressive symptomology. 1% participant serum was applied to human fetal hippocampal progenitor cells, and changes in HN markers were related to the occurrence of depressive symptoms across a 12-year period. Key nutritional, metabolomic and lipidomic biomarkers (extracted from participant plasma and serum) were subsequently tested for their ability to modulate HN. In our assay, we found that reduced cell death and increased neuronal differentiation were associated with later life depressive symptomatology. Additionally, we found impairments in neuronal cell morphology in cells treated with serum from participants experiencing recurrent depressive symptoms across the 12-year period. Interestingly, we found that increased neuronal differentiation was modulated by increased serum levels of metabolite butyrylcarnitine and decreased glycerophospholipid, PC35:1(16:0/19:1), levels - both of which are closely linked to diet - all in the context of depressive symptomology. These findings potentially suggest that diet and altered HN could subsequently shape the trajectory of late-life depressive symptomology.


Assuntos
Depressão , Neurogênese , Humanos , Depressão/metabolismo , Estudos de Coortes , Neurogênese/fisiologia , Hipocampo , Dieta , Envelhecimento
10.
Alzheimers Res Ther ; 14(1): 1, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34980257

RESUMO

BACKGROUND: Fatty acids play prominent roles in brain function as they participate in structural, metabolic and signaling processes. The homeostasis of fatty acids and related pathways is known to be impaired in cognitive decline and dementia, but the relationship between these metabolic disturbances and common risk factors, namely the ɛ4 allele of the apolipoprotein E (ApoE-ɛ4) gene and sex, remains elusive. METHODS: In order to investigate early alterations associated with cognitive decline in the fatty acid-related serum metabolome, we here applied targeted metabolomics analysis on a nested case-control study (N=368), part of a prospective population cohort on dementia. RESULTS: When considering the entire study population, circulating levels of free fatty acids, acyl-carnitines and pantothenic acid were found to be increased among those participants who had greater odds of cognitive decline over a 12-year follow-up. Interestingly, stratified analyses indicated that these metabolomic alterations were specific for ApoE-ɛ4 non-carriers and women. CONCLUSIONS: Altogether, our results highlight that the regulation of fatty acids and related metabolic pathways during ageing and cognitive decline depends on complex inter-relationships between the ApoE-ε4 genotype and sex. A better understanding of the ApoE-ɛ4 and sex dependent modulation of metabolism is essential to elucidate the individual variability in the onset of cognitive decline, which would help develop personalized therapeutic approaches.


Assuntos
Apolipoproteína E4 , Disfunção Cognitiva , Ácidos Graxos , Alelos , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Estudos de Casos e Controles , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Ácidos Graxos/metabolismo , Feminino , Genótipo , Humanos , Masculino , Testes Neuropsicológicos , Estudos Prospectivos , Fatores Sexuais
11.
Alzheimers Dement ; 18(4): 654-675, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34402599

RESUMO

INTRODUCTION: Diet and exercise influence the risk of cognitive decline (CD) and dementia through the food metabolome and exercise-triggered endogenous factors, which use the blood as a vehicle to communicate with the brain. These factors might act in concert with hippocampal neurogenesis (HN) to shape CD and dementia. METHODS: Using an in vitro neurogenesis assay, we examined the effects of serum samples from a longitudinal cohort (n = 418) on proxy HN readouts and their association with future CD and dementia across a 12-year period. RESULTS: Altered apoptosis and reduced hippocampal progenitor cell integrity were associated with exercise and diet and predicted subsequent CD and dementia. The effects of exercise and diet on CD specifically were mediated by apoptosis. DISCUSSION: Diet and exercise might influence neurogenesis long before the onset of CD and dementia. Alterations in HN could signify the start of the pathological process and potentially represent biomarkers for CD and dementia.


Assuntos
Disfunção Cognitiva , Demência , Disfunção Cognitiva/patologia , Demência/patologia , Dieta , Hipocampo/patologia , Humanos , Metaboloma , Neurogênese
12.
Mol Psychiatry ; 27(1): 34-37, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34140635

RESUMO

As millions of patients have been infected by SARS-CoV-2 virus a vast number of individuals complain about continuing breathlessness and fatigue even months after the onset of the disease. This overwhelming phenomenon has not been well defined and has been called "post-COVID syndrome" or "long-COVID" [1]. There are striking similarities to myalgic encephalomyelitis also called chronic fatigue syndrome linked to a viral and autoimmune pathogenesis. In both disorders neurotransmitter receptor antibodies against ß-adrenergic and muscarinic receptors may play a key role. We found similar elevation of these autoantibodies in both patient groups. Extracorporeal apheresis using a special filter seems to be effective in reducing these antibodies in a significant way clearly improving the debilitating symptoms of patients with chronic fatigue syndrome. Therefore, such a form of neuropheresis may provide a promising therapeutic option for patients with post-COVID-19 syndrome. This method will also be effective when other hitherto unknown antibodies and inflammatory mediators are involved.


Assuntos
Remoção de Componentes Sanguíneos , COVID-19 , Síndrome de Fadiga Crônica , COVID-19/complicações , Síndrome de Fadiga Crônica/diagnóstico , Síndrome de Fadiga Crônica/tratamento farmacológico , Humanos , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda
14.
Aging Dis ; 12(8): 2151-2172, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34881092

RESUMO

Age-related alteration in neural stem cell function is linked to neurodegenerative conditions and cognitive decline. In rodents, this can be reversed by exposure to a young systemic milieu and conversely, the old milieu can inhibit stem cell function in young rodents. In this study, we investigated the in vitro effect of the human systemic milieu on human hippocampal progenitor cells (HPCs) using human serum from early adulthood, mid-life and older age. We showed that neuroblast number following serum treatment is predictive of larger dentate gyrus, CA3, CA4 and whole hippocampus volumes and that allogeneic human serum from asymptomatic older individuals induced a two-fold increase in apoptotic cell death of HPCs compared with serum from young adults. General linear models revealed that variability in markers of proliferation and differentiation was partly attributable to use of antihypertensive medication and very mild cognitive decline among older subjects. Finally, using an endophenotype approach and whole-genome expression arrays, we showed upregulation of established and novel ageing molecular hallmarks in response to old serum. Serum from older subjects induced a wide range of cellular and molecular phenotypes, likely reflecting a lifetime of environmental exposures. Our findings support a role for the systemic enviroment in neural stem cell maintenance and are in line with others highlighting a distinction between neurobiological and chronological ageing. Finally, the herein described serum assay can be used by future studies to further analyse the effect of environmental exposures as well as to determine the role of the systemic environment in health and disease.

15.
Mol Nutr Food Res ; 65(23): e2100606, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34661340

RESUMO

SCOPE: Diet is considered an important modulator of cognitive decline and dementia, but the available evidence is, however, still fragmented and often inconsistent. METHODS AND RESULTS: The article studies the long-term prospective Three-City Cohort, which consists of two separate nested case-control sample sets from different geographic regions (Bordeaux, n = 418; Dijon, n = 424). Cognitive decline is evaluated through five neuropsychological tests (Mini-Mental State Examination, Benton Visual Retention Test, Isaac's Set Test, Trail-Making Test part A, and Trail-Making Test part B). The food-related and microbiota-derived circulating metabolome is studied in participants free of dementia at baseline, by subjecting serum samples to large-scale quantitative metabolomics analysis. A protective association is found between metabolites derived from cocoa, coffee, mushrooms, red wine, the microbial metabolism of polyphenol-rich foods, and cognitive decline, as well as a negative association with metabolites related to unhealthy dietary components, such as artificial sweeteners and alcohol. CONCLUSION: These results provide insight into the early metabolic events that are associated with the later risk to develop cognitive decline within the crosstalk between diet, gut microbiota and the endogenous metabolism, which can help identify potential targets for preventive and therapeutic strategies to preserve cognitive health.


Assuntos
Disfunção Cognitiva , Microbioma Gastrointestinal , Microbiota , Idoso , Disfunção Cognitiva/etiologia , Alimentos , Humanos , Estudos Prospectivos
16.
Transl Psychiatry ; 11(1): 555, 2021 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-34718328

RESUMO

Lithium is a first-line treatment for bipolar disorder, where it acts as a mood-stabilizing agent. Although its precise mechanism remains unclear, neuroimaging studies have shown that lithium accumulates in the hippocampus and that chronic use amongst bipolar disorder patients is associated with larger hippocampal volumes. Here, we tested the chronic effects of low (0.75 mM) and high (2.25 mM) doses of lithium on human hippocampal progenitor cells and used immunocytochemistry to investigate the effects of lithium on cell parameters implicated in neurogenesis. Corresponding RNA-sequencing and gene-set enrichment analyses were used to evaluate whether genes affected by lithium in our model overlap with those regulating the volume of specific layers of the dentate gyrus. We observed that high-dose lithium treatment in human hippocampal progenitors increased the generation of neuroblasts (P ≤ 0.01), neurons (P ≤ 0.01), and glia (P ≤ 0.001), alongside the expression of genes, which regulate the volume of the molecular layer of the dentate gyrus. This study provides empirical support that adult hippocampal neurogenesis and gliogenesis are mechanisms that could contribute to the effects of lithium on human hippocampal volume.


Assuntos
Hipocampo , Lítio , Giro Denteado , Humanos , Compostos de Lítio/farmacologia , Neurogênese , Neurônios
17.
Brain Behav Immun Health ; 15: 100286, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34345870

RESUMO

Cell culture models are valuable tools to study biological mechanisms underlying health and disease in a controlled environment. Although their genotype influences their phenotype, subtle genetic variations in cell lines are rarely characterised and taken into account for in vitro studies. To investigate how the genetic makeup of a cell line might affect the cellular response to inflammation, we characterised the single nucleotide variants (SNPs) relevant to inflammation-related genes in an established hippocampal progenitor cell line (HPC0A07/03C) that is frequently used as an in vitro model for hippocampal neurogenesis (HN). SNPs were identified using a genotyping array, and genes associated with chronic inflammatory and neuroinflammatory response gene ontology terms were retrieved using the AmiGO application. SNPs associated with these genes were then extracted from the genotyping dataset, for which a literature search was conducted, yielding relevant research articles for a total of 17 SNPs. Of these variants, 10 were found to potentially affect hippocampal neurogenesis whereby a majority (n=7) is likely to reduce neurogenesis under inflammatory conditions. Taken together, the existing literature seems to suggest that all stages of hippocampal neurogenesis could be negatively affected due to the genetic makeup in HPC0A07/03C cells under inflammation. Additional experiments will be needed to validate these specific findings in a laboratory setting. However, this computational approach already confirms that in vitro studies in general should control for cell lines subtle genetic variations which could mask or exacerbate findings.

18.
Brain Behav Immun ; 97: 410-422, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34352366

RESUMO

Neurogenesis, the process in which new neurons are generated, occurs throughout life in the mammalian hippocampus. Decreased adult hippocampal neurogenesis (AHN) is a common feature across psychiatric disorders, including schizophrenia, depression- and anxiety-related behaviours, and is highly regulated by environmental influences. Epidemiological studies have consistently implicated maternal immune activation (MIA) during neurodevelopment as a risk factor for psychiatric disorders in adulthood. The extent to which the reduction of hippocampal neurogenesis in adulthood may be driven by early life exposures, such as MIA, is however unclear. We therefore reviewed the literature for evidence of the involvement of MIA in disrupting AHN. Consistent with our hypothesis, data from both in vivo murine and in vitro human models of AHN provide evidence for key roles of specific cytokines induced by MIA in the foetal brain in disrupting hippocampal neural progenitor cell proliferation and differentiation early in development. The precise molecular mechanisms however remain unclear. Nonetheless, these data suggest a potential latent vulnerability mechanism, whereby MIA primes dysfunction in the unique hippocampal pool of neural stem/progenitor cells. This renders offspring potentially more susceptible to additional environmental exposures later in life, such as chronic stress, resulting in the unmasking of psychopathology. We highlight the need for studies to test this hypothesis using validated animal models of MIA, but also to test the relevance of such data for human pathology at a molecular basis through the use of patient-derived induced pluripotent stem cells (hiPSC) differentiated into hippocampal progenitor cells.


Assuntos
Hipocampo , Neurogênese , Adulto , Animais , Transtornos de Ansiedade , Diferenciação Celular , Humanos , Camundongos , Neurônios
19.
Front Neurosci ; 15: 695367, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34366778

RESUMO

There are sex differences in metabolic disease risk, and early-life stress (ES) increases the risk to develop such diseases, potentially in a sex-specific manner. It remains to be understood, however, how sex and ES affect such metabolic vulnerability. The hypothalamus regulates food intake and energy expenditure by sensing the organism's energy state via metabolic hormones (leptin, insulin, ghrelin) and nutrients (glucose, fatty acids). Here, we investigated if and how sex and ES alter hypothalamic nutrient sensing short and long-term. ES was induced in mice by limiting the bedding and nesting material from postnatal day (P)2-P9, and the expression of genes critical for hypothalamic nutrient sensing were studied in male and female offspring, both at P9 and in adulthood (P180). At P9, we observed a sex difference in both Ppargc1a and Lepr expression, while the latter was also increased in ES-exposed animals relative to controls. In adulthood, we found sex differences in Acacb, Agrp, and Npy expression, whereas ES did not affect the expression of genes involved in hypothalamic nutrient sensing. Thus, we observe a pervasive sex difference in nutrient sensing pathways and a targeted modulation of this pathway by ES early in life. Future research is needed to address if the modulation of these pathways by sex and ES is involved in the differential vulnerability to metabolic diseases.

20.
Cell Stem Cell ; 28(10): 1805-1821.e8, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34033742

RESUMO

Neural stem cells residing in the hippocampal neurogenic niche sustain lifelong neurogenesis in the adult brain. Adult hippocampal neurogenesis (AHN) is functionally linked to mnemonic and cognitive plasticity in humans and rodents. In Alzheimer's disease (AD), the process of generating new neurons at the hippocampal neurogenic niche is impeded, yet the mechanisms involved are unknown. Here we identify miR-132, one of the most consistently downregulated microRNAs in AD, as a potent regulator of AHN, exerting cell-autonomous proneurogenic effects in adult neural stem cells and their progeny. Using distinct AD mouse models, cultured human primary and established neural stem cells, and human patient material, we demonstrate that AHN is directly affected by AD pathology. miR-132 replacement in adult mouse AD hippocampus restores AHN and relevant memory deficits. Our findings corroborate the significance of AHN in mouse models of AD and reveal the possible therapeutic potential of targeting miR-132 in neurodegeneration.


Assuntos
Doença de Alzheimer , MicroRNAs , Doença de Alzheimer/genética , Animais , Modelos Animais de Doenças , Hipocampo , Humanos , Transtornos da Memória/genética , Transtornos da Memória/terapia , Camundongos , MicroRNAs/genética , Neurogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA